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The evolution of long, finite amplitude Rossby waves in a horizontally sheared zonal 
current is studied. The wave evolution is described by the Korteweg-de Vries equation 
or the modified Korteweg-de Vries equation depending on the atmospheric stratifica- 
tion. In  either case, the cross-stream modal structure of these waves is given by the 
long-wave limit of the neutral eigensolutions of the barotropic stability equation. Both 
non-singular and singular eigensolutions are considered and the appropriate analysis 
is developed to yield a uniformly valid description of the motion in the critical-layer 
region where the wave speed matches the flow velocity. The analysis demonstrates 
that coherent, propagating, eddy structures can exist in stable shear flows and that 
these eddies have peculiar interaction properties quite distinct from the traditional 
views of turbulent motion. 

1. Introduction 
Recently, a number of nonlinear equations describing the evolution of finite ampli- 

tude waves in dispersive media have been shown to possess exact analytical solutions 
whose single most distinctive feature is the existence of solitary waves. These waves, 
called solitons, emerge as permanent entities from quite general initial states of motion 
and are stable even to mutual interactions (see, for example, Scott, Chu & McLaughlin 
1973). Perhaps the best known of these nonlinear evolution equations is the Korteweg- 
de Vries (KdV) equation, which was derived originally in the context of free-surface 
gravity waves propagating in shallow water. 

In  this paper we show that the amplitude of zonally propagating long planetary 
waves in an atmosphere with a horizontally sheared zonal flow obeys the KdV equa- 
tion or the modified KdV (MKdV) equation depending on the existence and nature 
of the atmospheric density stratification. Long (1964) and Benney (1966) discussed 
long waves in a homogeneous atmosphere and obtained the KdV equation, but their 
analysis was limited to the case where the velocity shear was small compared with a 
basic uniform zonal motion and they gave no insight pertaining to the kinds of stream- 
line-flow patterns accompanying these waves. Their limitation to a small shear super- 
imposed on an order-one uniform flow avoided the special considerations required by 
the existence of a critical layer where the wave speed matches the zonal-flow velocity. 
Solitary Rossby waves were also studied by Larsen (1  965) and Clarke ( 197 1 ), but they, 
as well, avoided a discussion of the critical layer and did not provide any information 
about possible Aow patterns. In  the analysis which follows, we take the shear to be of 
order one and also consider the case when the atmosphere has a distributed, stable 
density stratification. Both generalizations require fundamentally different analytical 
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considerations from the usual KdV theory. Specifically, a discussion of the dynamics 
in the vicinity of the critical latitude is required. The solution for the motion in the 
critical-layer region provides a description of the possible kinds of solitary-wave 
streamline patterns that can arise. It is found that, for an asymmetric shear layer such 
as U(y) = tanh y, for example, two basic patterns emerge: one with closed, elliptically 
shaped streamlines and one with reversed flow both fore and aft of the wave centre. 
For other kinds of shear flows permitting multiple critical layers, a rich variety of 
eddying motion can accompany these waves. 

The linear dispersion relation for the class of wave motions discussed here has the 

(1.1) 
form 

in the long-wave limit ( 1  -+ 0). Hence, if we consider a reference frame moving with the 
long-wave phase speed co, it is clear that the slow space and time scales must satisfy the 
relations 6 = dpx and r = &t, respectively, if the weak phase dispersion measured 
by yo is to be balanced by the nonlinearity or amplitude dispersion. The integer value 
of p is consistent with the nonlinear term in the generalized evolution equation 

w = coZ-yoZ3+ ..., @ - Aexp{i(Zz-wt)), 

A,  +ApA,+Acg = 0 (1.2) 
applicable for conservative systems of the type (1 .1) .  The value of p emerges from the 
analysis. These comments provide the basis for the choice of the multiple scales used 
in the ensuing analysis. 

2. Theoretical foundations 
The mathematical basis for the theory presented herein is the quasi-geostrophic 

form of the potential-vorticity equation for an incompressible stratified fluid (cf. 
Pedlosky 1971): 

{a, + Y;, a,, - Y;, a , )  [a:.,. -t. a;rup + a,,(f;~-2a,,)l Y' + ply;, = 0. (2.1) 
Rossby's ,&plane model has been used, in which the dynamical effects of planetary 
sphericity are retained only in the horizontal component of the Coriolis force and 
approximated as 

f =  2nsine = ~ Q S ~ ~ O , + ~ R T , - ~ ~ ' C O S B  - f  
yt = T o p - -  eo). O - o+p'y',J (2.2) 

In  these equations (x', y') are local Cartesian co-ordinates centred at latitude 0, and 
directed towards the east and north, respectively, and the velocities in these directions 
are (Yh., -"A,). The vertical co-ordinate is z' and, consistent with the order of approxi- 
mation implicit in (2.1), the vertical velocity is given by 

W' = f o  N-2 (ar + Y;, as, - Ur;.a,,) Y;., (2.3) 
where N is the Brunt-Vaisiila frequency. The atmosphere is assumed to be confined 
between two fixed horizontal planes with a vertical separation distance D. Hence we 
require that Yi. vanishes a t  z' = 0, D. The analysis carries through for free surfaces as 
well, but we do not include a general discussion of that case here. In  the theoretical 
development we assume that latitudinal boundaries are also present, with a separation 
distance L. The letter restriction can be relaxed for certain models even within the 
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context of the @-plane approximation and, in that case, we suppose that L is a 
characteristic measure of the width of the mean zonal shear flow. If the atmosphere is 
homogeneous, the derivatives with respect to z' are absent in (2.1). 

It is convenient at  this point to introduce dimensionless variables defined as 

(x' ,Y')  = L ( x , ~ ) ,  Z' = Dz, t' = -t, L W' = D - U ~ W ,  Y' = UoLY, j3' = -@, UO UO L L2 
(2.4) 

where Uo is the scale of the zonal flow (the maximum of U ( y ) ,  say). The total stream 
function Y is considered to be composed of a disturbance, characterized by a non- 
dimensional amplitude paramet'er e, superimposed on the zonal shear flow U ( y ) .  Thus 
we write 

w x ,  y ,  2, t )  = { u (y') - co> dy' + e$(x, y, z, t ) ,  (2 .5)  I-,: 
where co is a constant, which we later identify as the linear long-wave phase velocity of 
a Rossby wave in the shear flow, and yc denotes the level where U(y,) = co, provided 
that Umin < co < Urn,,, but is otherwise arbitrary. With these definitions, (2.1) and 
(2.3) become 

{a,+ (U-c,)a,+€($-,a,-$,a,)>[a~,+a~,+a2(K2a2)11C.+ (P- ~ " ) l C . ,  = 0 (2.6) 

and w = R o K ~ e { a ~ + ( U - c o ~ ~ , + ~ ~ ~ ~ ~ x - $ , ~ ~ ~ > $ ~ .  (2.7) 

Primes are now used to denote total derivatives with respect to y .  The parameters 
appearing in these equations have the definitions 

K = foL /ND = L/L,, RO = Uolf0L. (2.8) 

The first parameter, a rotational internal Froude number, is assumed to be of order one. 
It compares the horizontal length scale L with the intrinsic scale L,, called the Rossby 
radius of deformation. The effect of stratification is important only when L is of the 
order of L,. The second parameter is the Rossby number, which has been assumed to be 
small in the derivation of (2.1). Equation (2.1) is, therefore, an equation describing the 
time evolution of a geostrophic flow and we now show that permanent or solitary waves 
can exist in such a flow whenever it contains persistent shearing motion. 

2.1. Strati$ed atmosphere ( N  = constant) 
In this section we derive the asymptotic solution of (2.6) for weakly nonlinear 
(0 < e < 1 )  long waves when the Brunt-Vaisala frequency is constant. To this end it is 
convenient to introduce the multiple-scale variables 

5 = ex, r = e3t (2.9) 

(2.10) 

and write the disturbance stream function as 

$(x,  y, z, t )  = $(I)($, y ,  z ,  r )  + q V 2 )  + e3$(3) + . . . . 
As will be seen shortly, this is the appropriate scaling to achieve a non-trivial balance 
between the effects of dispersion and nonlinear steepening for long waves. Defining the 
linear operator 

Y = a,{( u - co) (a;, + K2 f (@ - U " ) }  (2.11) 
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and substituting into (2.6) yields 

~?$(1) + c { L ? ~ )  + ($p a, - $p) ay ) ( aiU + K2 a$,) pi)} 
+ ~2{2#3) + ($p a, - $p ay) (a$, + K~ a:,) p2) + ($p a, - $pay) ( atv + K 2  aQ) p) 

(2.12) + (u - c0)  $& + (a& + K2a;z) $g)} + o(~3) = 0. 

To leading order, the solution for a single internal-wave mode (n, say) satisfying the 
rigid-lid boundary conditions is 

$(l) = An((,7) #n(y) 60s nnz, (2.13) 

where #,(y) is determined by the solution of the equation 

with 
(2.14) 

The amplitude function A,((, 7 )  is arbitrary to this order. As (2.14) shows, the north- 
south modal structure of the wave is given by solutions to the barotropic stability 
equation in which the parameter k ,  assumes the role of the wavenumber. Since we are 
explicitly seeking a long-wave solution, the wavenumber does not enter to this order. 
Equation (2.14) defines an eigenvalue problem for the real eigenvalue con when U(y), 
1 and k ,  are specified. 

Before continuing with the theoretical development, we note that there are basically 
three different kinds of solution for #,(y) depending on the magnitude of con. If con is 
outside the range of U(y)(c0, < Umin or Con > Urnax), solutions of (2.14) are well 
behaved for all y in y1 < y < y2. We refer to this class of solutions as propagating 
neutral modes (PNM). The same holds for non-singular or regular neutral modes 
(RNM), for which Umin < con < Umax but 

lim B,(y) = lim {(p- U ” ) / ( U  -con)} 
Y + Y m  Y‘Um 

(2.15) 

is finite. However, if (p  - U”(ycn))  + 0 and Umin < con < Urnax, #,(y) is a singular neutral 
mode ( SNM) and (2.13) is not uniformly valid for all y. In  this case (2.13) is only an outer 
solution (for y > yen, say) and an inner solution (critical-layer analysis) is required to 
obtain connexion formulae across the critical layer a t  y = yen. Higher-order terms in 
the outer expansion for the RNM are also singular and require a separate critical-layer 
analysis. These latter cases are discussed separately in 3 3. 

For non-singular neutral modes we can continue the analysis and obtain 

$@) = $Ai{#2 2)(y) cos + #Z”(y)), (2.16) 

where the #‘,“.i) are given by the inhomogeneous equation 

with #p(yl) = #‘,“.j’(y2) = 0. J 
There are no non-trivial solutions to the homogeneous equation and the particular 
solution is singular at  y = yCn whenever Umin < con < Umax, i.e. for both RN and SN 
modes. Note that the right-hand side vanishes when U is constant. It is for this reason 
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that solitary Rossby waves exist only if there is a horizontal shear in the zonal flow. 
Proceeding to the next order, one obtains the equation 

9F3’ = (u-con)  { f k 3 ) ( ~ ) A n , 7  +s‘,~’(Y) ( A $ ) 5 + h f ) ( ~ ) A n , 5 5 5 ) ~ 0 ~ n ~ z  

( 2 , 2 ) - 1  9 w  I) cos3nnz, 
It 3 (U-Con)2 

where 

(2.18) 

( 2 . 1 9 ~ )  

(2.19 b)  
( 2 . 1 9 ~ )  

Restricting ourselves to modes without critical layers (i.e. PN modes), it is clear that 
a solution to (2.18) exists only if An(c, T )  evolves according to the modified Kortsweg- 
de Vries (MKdV) equation 

A n , ,  +RnA2,An,,+SnAn,,  = 0, (2.20) 

where the coefficients Rn and Sn have the definitions 

where 

( 2 . 2 1 ~ )  

(2.21 b )  

(2.21c) 

For modes with critical layers (Urnin < con < Urnax), the first integral does not exist, 
even as a principal value. However, the evolution equation (2.20) is still applicable 
with differently determined coefficients. The contribution to F3) from the nth internal- 
wave mode, $(39 l) say, in any case can be written as 

e 3 , 1 )  = ~4:55$~7~)(y) cosnnz+ A , ,  q5L39‘)(y) cosnnz, (2.22) 

p- U“ 
u - Con 

with 4 3 ,  W’ - k2 n $!3,1) + - q5!3,1) = gn (3) (Y) -RnfA3’(y), ( 2.23 a )  

(2.23b) 
,$f,1)” - k2 $;3,1) + - p- U” #(3,1) = h(3)(y) - S f(3)(y). 

n 2 n n n  u - Con 

The solutions to these equations are 
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where $, and & are the two linearly independent solutions to the homogeneous 
equation. Applying the boundary conditions yields 

and 

(2.25 a) 

(2.25 b)  

These coefficients are well defined, even though the particular integrals Fg), Gf) and 
Hg) may be singular at  y = yCA, once the appropriate connexion relations across the 
critical layer have been established. Thus, even for the singular case, the MKdV 
equation remains the relevant evolution equation for the outer flow. It will be shown 
later that a systematic analysis of the critical-layer region provides no further restric- 
tions on the evolution of the wave. It does yield, however, the connexion formulae 
across the critical level which are necessary for defining the eigenfunction &(y) and 
computing the eigenvalues con. 

An alternative derivation of the coefficients R, and S, for RN and SN modes can be 
given which uses a modification of the solvability condition. Using the notation of 
( 2 . 2 3 ~ )  and ( 2 . 2 4 ~ )  one can obtain the relation 

[$L(Gf)- R,Fg)) - $,(Gg)- R, Ff))’];$% 

= 1;- &(g(n3) - R,fA3)) dy + 1” $,(g(n3) - R, f:)) dy, (2.25 c) 

where 6 is a small constant ( O ( d ) ,  see 9 3). This extension of the solvability condition 
was first given by Benney & Maslowe (1975b). The advantage over ( 2 . 2 5 ~ )  is that the 
complete solution for q S 3 9  l) is not required, only the behaviour of the particular solution 
in the immediate vicinity of the critical level. 

The MKdV equation admits soliton solutions whenever R, is positive, so that the 
effect of the nonlinearity is to steepen the wave. Also, since the MKdV equation is 
invariant to a change in the sign of A,, the solution for an isolated soliton is 

uc-t 8 

(2.26) 

Wadati (1973) has constructed the inverse scattering transform (IST) solution to the 
MKdV equation for appropriate initial data. His solution is a special case of a more 
general technique developed by Ablowitz et al. (1974). Cnoidal-wave solutions of (2.20) 
ere also possible and they can be modulationally stable or unstable depending on the 
choice of certain wave parameters (cf. Driscoll & O’Neil 1976), but we shall not 
consider these waves any further here. 

Rn ’ O ’ I  
An(t, 7 )  = f sech { (Rn/6Sn(’ (5 - cln7)), 

cln = QR,sgn 8,. 

2;2. Homogeneous atmosphere 
The case when the atmosphere is homogeneous, so that there is no variation of the 
flow quantities in the vertical, is studied in this section. The effect of divergence (i.e. 
a free upper surface) is included in the discussion since it is straightforward to do so. 
For this atmospheric model the governing equation is 
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The divergence parameter kg has the definition 

kg = f: L2/g*D, (2.28) 

where g* is the reduced gravity (ghplp) applicable to the free surface, which is located 
a distance D above a flat bottom boundary. In  the analysis which follows we take kX 
to be an order-one parameter, but the non-divergent limit k$ = 0 is uniform and can 
be taken without further modification. 

The appropriate long-wave scaling for this case has 

'$ = dx, 7 = s)t .  (2 .29)  

Although different definitions are given for the scaled variables, the same notation is 
used as in the previous subsection. This is the scaling required to balance the effects of 
dispersion and quadratic nonlinearity leading to the familiar KdV theory. If the 
disturbance stream function is then written as a regular perturbation series in the small 
applitude parameter 6,  

$(x, y, t )  = $(I)('$, y , ~ )  +c$(~)+ ... = A('$,7) $(y) +SF')+ ..., (2.30) 

one finds that, to leading order, the modal structure of a long wave is prescribed by the 
eigenvalue problem 

(2.31) 

The inhomogeneous equation for gV2) then becomes 

at{ ( u - co) (a&, - kg) + (p + kg U - U")]  F2) 

A separable solution for $(2) is possible only if A([ ,  7 )  evoIves according to the familiar 
KdV equation 

A ,  + Ro AAt + 80 A ,  = 0. (2 .33)  

The values of the coefficients R, and So for non-singular neutral-mode solutions to 
(2 .31)  are determined, by jnvoking the solvability condition, to be 

(2.34b) 

These integrals exist as principal values when Umin < c,  c Urn,, provided that 

Bo(y) = ( p + k i U -  U")/(U-cO) (2 .35)  

is a regular function for all y1 < y < y2, i.e. for RN modes. The singular case requires 
the same critical-layer consideration as was mentioned for the stratified atmosphere 
in the previous subsection. 

Long (1964) and Benney (1966) derived the KdV equation describing the evolution 
of long waves in a homogeneous atmosphere also, but their analysis assumed a priori 
that the sheared current was small compared with an order-one uniform mean flow. 
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In  the present case, no such restrictions are imposed and some examples of the stream- 
line patterns for an isolated soliton when the shear is of order one are presented in $ 4 .  
The solution of (2.33) for an isolated soliton is 

A (C, 7) = sgn @,So) sech2 ( 1  R0/12S,,I* (g - c1 7)}, 
c1 = - Q lRol sgn So. 

(2.36) 

Only one sign of the amplitude function is acceptable now in contrast to the MKdV 
case (2.26) and, since the sign depends on the coefficients R, and So, it may change for 
different positions on the eigenlocus defined by (2.31). 

It is interesting to note that the time and length scales and the evolution equations 
are fundamentally different for the two cases of a stratified atmosphere with a constant 
Brunt-Vaisall frequency and a homogeneous atmosphere. These two seemingly 
disparate limits can be most easily unified by considering the more general case of 
arbitrary stratification. Then the linear solution to (2.6) can be expressed as 

1C.''' = c M Z ,  4 M Y )  Z n ( 4 ,  (2.37') 
n 

where Z,(z) satisfies the following eigenvalue problem for kit 

(K2(2) 2;)' + ki 2, = 0, Z,(O) = en( 1) = 0. (2.38) 

By writing the vertical structure a t  each order in the solution in terms of the complete 
set Z,, one can obtain an evolution equation with both quadratic and cubic non- 
linearities. The case of constant stratification is special in that the coupling coefficient 
for the quadratic term vanishes identically. The homogeneous case has ki = 0 and 
2, = 1. The general case (2.37) is discussed by Redekopp & Weidman (1977) in the 
context of interacting solitary waves with different linear phase speeds described by 
coupled systems of KdV equations. 

3. Nonlinear critical-layer analysis 
In  this section we develop the inner (critical-layer) expansion so that a solution 

which is uniformly valid for all y can be constructed when the linear phase speed con 
lies within the range of U(y). Both singular neutral modes (SNM), for which the linear 
eigenvalue equation (2.14) is singular, and regular neutral modes (RNM), for which the 
eigenvalue equation is regular but higher-order terms in the outer expansion are 
singular, are considered. The requisite critical-layer analysis for these modes involves 
a generalization of the nonlinear critical-layer theory developed by Benney & 
Bergeron (1969). 

During the early stages of this work, a paper by Benney & Maslowe ( 1 9 7 5 ~ )  appeared 
in which they discuss the nonlinear critical-layer theory appropriate to the time 
evolution of finite amplitude waves in a parallel shear flow, having in mind the early 
stages of instability and transition of such flows. Their analysis and that which follows 
have common features, such as the form of the inner expansion, etc. Nevertheless, 
there are several important differences and extensions to the theory which are worthy 
of a separate discussion here. Specifically, the application to long waves, the modifica- 
tions necessary in the application of the viscous secularity condition at higher orders, 
and the solution for RN modes are discussed. 
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Since the analysis presented in this section is lengthy, tedious and non-trivial, we 
summarize the essential details a t  the outset. The nonlinear critical-layer analysis 
applies when E & R-%, where R is the Reynolds number, in the MKdV case and requires 
E & R-4 in the KdV case. This restriction ensures that the advection of vorticity 
dominates viscous diffusion in the layer. We conclude for this case that there is no 
phase change in the outer solution across the critical layer and, hence, that the wave 
evolution is determined entirely by the outer flow. The analysis reveals that closed- 
streamline regions exist within which the potential vorticity is constant (essentially 
zero). The total stream function defining the flow pattern in the critical layer is given, 
to leading order, by? 

(3.1) 

where q$ = #(yc). This equation applies for both the MKdV and the KdV theory. The 
dividing-streamline shape can be computed directly for an isolated soliton, when 
A ( ~ , T )  is given either by (2.26) or by (2.36). Assuming that U; and 4, are positive and 
noting that 0 < IA((,T)] < I, we obtain 

Y = €8 = t U E ( y - y c ) 2 + ~ A ( t , 7 ) 4 c ~ ~ ~ n 7 1 ~ ,  

( y -  yJdsl = & ~i(2q5, U~--l(Sc(z)  - A  cos nnz))i, (3.2) 

where SJz) is the critical value of S/q5c on the dividing streamline (dsl). When 
A cos nnz is negative, S, is zero and the latitudinal variation of the dividing streamline 
is proportional to sech) 8 for an MKdV soliton and sech 8 for a KdV soliton. When 
A cos nnz is positive, S, = )cosnnzl and the location of the dividing streamline is 
proportional to (1  - sech 0)i for an MKdV soliton and tanh 8 for a KdV soliton. We 
call the first type an E-soliton (envelope or elevation) and the latter type a D-soliton 
(diverting or depression). The two types of soliton are depicted schematically in 
figure 1. These types can be interchanged if U;  and/or 4, change sign and both types 
can appear simultaneously in shear flows with two or more distinct critical levels (e.g. 
a jet). The modifications in the analysis for these conditions are straightforward and 
we assume that U; and SS, are both positive in the remainder of this section. 

3.1. Singular neutral modes 
As a preliminary to discussing the inner solution for SN modes, we recall the two 
linearly independent Frobenius solutions of the eigenvalue equation (2.14) valid in the 
vicinity of the critical point y = ye. The regular solution is 

00 

= Z an(Y-YJn 
n= 1 

and the singular solution is 

(3.3a) 

1u,"p-u," 3 p-u, 
q5a(y) = 1 + [Y -+-+- ;;; 4u; - ___-- u; 4( - u; ) ] ( Y - Y c ) 2 + . . .  

t Henceforth we omit the subscript n denoting the internal-wave mode number from A(& T), 
&y), y,, etc., for purposes of convenience and to simplify lengthy expressions. 



734 L. G .  Redekopp 

f Y  

FIGURE 1. Schematic diagram of the dividing streamline for an E- and a D-soliton. 

We choose to write the singular solution using log ly-ycl as opposed to log (y- y,) 
so that all expressions are real. The outer solution for y > yc is then written as 

$Y) = A (5, 7) [@-$,(y) + MY)] c0.7 nm (3.4a) 
and that for y < ye is written as 

9'" = 4 5 )  7) [Y$,(Y) +P$,(Y)l cosflm + a 5 1  7) [K$,(Y) +Ic4a(Y)I cosn7r.z. (3.4b) 

The appropriate branch of the logarithm for y < yc, contained in the constants in (3 .4b ) )  
is to be determined by matching the two expressions across the critical layer. From the 
analysis in Q 2.1, we know that A ( ( ,  r )  is prescribed by the MKdV equation, but we 
allow for the possibility that, in general, there may be a phase shift in the outer solution 
required by the matching across the critical Ievel. We do not give the evolution equation 
for D ( f ,  7) since, as will be seen shortly, it is not needed. We also record the behaviour 
of the particular integral qP.j) from (2.17) valid near the critical point, namely 

I 
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The particular solutions become progressively more singular near the critical point as 
one goes to higher orders in the outer expansion. For example, the form of the particular 
solution for 9i3* l) is 

W m 

9i33‘)(~) = (log IY-YCI)~ C tn(y-ycIn +(log ( Y - Y ~ I ) ~  C a n ( Y - ~ c ) ~  
n= 0 n= 0 

00 m 

+log IY-ycI X vn(Y-Yc/c)n+ Z wn(Y-Yc)n* (3.6) 
n= 0 n= - 2  

Expressions (3 .3 ) ,  (3 .5 ) ,  (3 .6 ) ,  etc., determine the scale of the critical layer and also 
the form of the inner expansion. As shown by Benney & Bergeron, a balance between 
the linear and the nonlinear advective terms in the critical-layer region, which also 
permits a consistent matching with the outer solution (3 .4 ) ,  is achieved by the 
stretching transformation 

y- ye = s t y .  (3 .7)  

Then, writing the outer expansion in terms of the inner variable Y ,  we obtain, for the 
total stream function, that 

U’ lim Y = c (( + ~2 + A cos nnz) + et log e r~ Y A  cos nnz) 
I--+ m 

1 rP1 A2 
Y 4  

Y3  + Y ( a  + boolog I YI) A C O S ~ T Z  +- - (COS 2 n n ~  + 1) + . . . 

1 log 1 Y I + $) $ (cos Znnz + 1) + . . . b a  
2 + 8 log € [ Y2A cos nnz + 

+ e [:; 2 Y4 + Y2(b, + booa210g 1 Y I + aa2) A cos nnz 
- 

1 A2 + (ro + p o  log2 I Y I + qo log I Y I) 4 (cos 2nnz + I )  + . . . 

+e*[Y(y+pboologIY()Acosnnz+ Y(K+pbO0log IYl)Dcosnnz+ ...I+...). ( 3 . 8 b )  

Only the terms necessary to establish the connexion between (3 .4a ,  b) across the 
critical level are included in the latter expression. The first expression is written in 
such a way that the interpretation as Y + -co can also be made unambiguously. 
Higher-order matching conditions can be computed in a straightforward, albeit 
tedious, manner. The results show that the inner expansion proceeds as 

Y = e{Y(O)(g, Y ,  Z, 7 )  + €3 log EY(~) + d ~ ( 2 )  + 6 log2 SY@) + log EY@) + E Y ( ~ )  + €3 log3 SY@) 

+ € 8  log2€Y(’) + €# log eW*)  + €$Y@)+ . ..}. (3 .9)  

Further terms in the expansion follow the indicated pattern 
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The governing equation describing the motion in the critical-layer region is (2.6) 
written in terms of the inner variable Y :  

(€8 a, + (Yy a(- Ul; a,)} ( 8 % ~  + €:K2 atz + a&) Y + d P Y ~  = EAYI-I-,~~. (3.10) 

The term on the right-hand side is the leading viscous term and the coefficient A has 

h = (R&)-l. (3.11) 
the definition 

We are interested in the situation where the value of h is always much smaller than 
unity, and hence we suppose that each of the terms in the expansion (3.9) possesses 
a regular perturbation in terms of A. This implies, therefore, that the Reynolds number 
R bears a unique relation to the amplitude parameter 6 .  We note that the viscous 
parameter h is different from that defined by Benney & Bergeron or Benney & 
Maslowe because of the long-wave approximation used here. In  fact, if we were to 
formulate the analysis in terms of the KdV theory instead of the MKdV case, the 
parameter h would have the definition (Re2)-l. Viscous effects are included because 
recourse to their ultimate influence on the motion is necessary in order to render the 
nonlinear critical-layer solution unique. It should not be surprising that the role of 
viscosity cannot be avoided whenever a unique solution for a flow having closed- 
streamline motions is desired. 

The equation for the leading-order behaviour in the critical layer is nonlinear and is 

( y ( o ) a  Y(0) a y 0 )  - hy(0) (3.12) 
given by 

Recalling that A is indeed small, we suppose that a solution of the form 
P 5-  6 P)  bF-  Y P Y Y .  

= y@# 0) + hy(o,9 + . . . (3.13) 

must exist. This will always be true except when local gradients of the velocity field 
specified by Y(O,O) are large. It is useful at this stage to transform the independent 
variables in the manner 

(~,Y,~,z)~(X=~,S=Y(O,O),T = ~ , Z = Z )  (3.14) 

to facilitate the integration of the equations for the sequence of functions in the inner 
expansion. Then, using the matching condition ( 3 . 8 ~ )  for y > yc, one finds that 

+S$ = P(O)(S, T, 2) - UA A cos nm, (3.15) 

where P(0) is an arbitrary function. Its value is made unique by examining the linear 
equation for Yo, l )  and requiring that W0, l )  is not secular, i.e. that it admits a solution 
having the periodicity consistent with the outer flow (see discussion in the next 
paragraph). The result obtained after applying this condition is 

W O )  = S = 9UAY2 + A(& 7) cos nm. (3.16) 

This solution is valid throughout the critical layer and hence, by imposing the matching 
condition (3.8b), yieldsp = 1 andp = 0. The solution (3.16) reveals the dominant flow 
structurein the critical layer as explained in the introduction to this section. Proceeding 
in a similar fashion to the next order we obtain 

Y(l) = $boo YA(& 7) COB nm, (3.17) 

which satisfies the matching condition identically with the previous choice for p and p. 
The viscous corrections for both of these solutions are identically zero. 
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The analysis is more complicated a t  the next order and, since the remaining con- 
stants in (3.4b) are determined at  this stage, a few more details are presented. The 
equation for V2) can be written in the form 

(S&-fp,) = (3.18) 

where r = y . ' ~ ) ~  -py. (3.19) 

Writing the function r, which, correct to this order, is the negative of the potential 
vorticity in the critical layer, in a power series as 

r = r(o)+ml)+ ..., (3.20) 

we obtain r(0) = P(~,o)(s, T ,  z). (3.21) 

The equation for I'c1) can be written in the form 

p i )  - - 8 YFgko)+SypSplFgo) = {sgn Y[2Ui(S-A co~nnx)]iF(,2*~))~, (3.22) 

after using (3.15) to obtain 

8, = sgn Y[ZU&S'-A cosnnz)], S > S,(T,Z). (3.23) 

At this stage we invoke the viscous secularity condition, by which we require the 
viscous correction to the flow in the critical layer to exhibit the same periodicity as that 
forced by the outer flow. For a cnoidal wave train with wavelength 2n/A, this condition 
takes the form 

r$ )dX  = 0. (3.24) 

However, in order also to include the initial-value problem on compact support and 
the solitary-wave limit (A + 0) of a cnoidal wave train, we write the secularity 
condition as 

J02"'" 

[2UC(S- A cos nnz)]ldX 

(3.25) 

The 'wavenumber' A may be a slowly varying function of time. Equation (3.25) then 
shows that the unknown function F(2,0), for S > S,, must be of the form 

F@?O) = M(T,Z) ( I (S ,T ,Z )+(2S /Uf ) t )+N(T ,  Z), (3.26 a )  

where I ( S , T , Z )  = {[A/" [2U6(5-A cosnnx)]~ dX]-1-(2UE<)-i 
2n -n /A  

Applying the matching condition causes us to choose 

M = (sgn Y )  ULboo, N = - I (S  = 00) M .  (3.27) 

Within the dividing streamline (S < S,) the potential vorticity must be constant if the 
solution is to be non-singular (cf. Batchelor 1956). Thus, when S < S,, 

F(290) = No, (3.28) 

from which one finds that the vorticity cannot be continuous across the dividing 
streamline and that thin transition layers, within which the viscous terms enter to 
leading order, exist along these streamlines. Benney & Bergeron give the solution for 
the viscous layers when the dividing streamlines are sinusoidal and their analysis can 
be extended immediately to the present case. 

25 F L M  82 
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(3.28) once, which yields 
We compute the velocity field by returning to (3.19) and integrating (3.26) and 

Then, after obtaining the asymptotic behaviour and also insisting that the velocity be 
continuous across the dividing streamlines, one finds by matching that 

y = a, K = 0, No = 0. (3.30) 

There is no phase shift across the critical layer and the potential vorticity to this order 
is zero within >he recirculating or closed-streamline regions. The leading-order 
behaviour in both the outer and the critical-layer flow is now determined. 

The viscous correction r(l) in the critical layer can be computed straightaway to be 

r(1) = ~ ( 2 .  y ~ ,  T ,  z) + 1" ( S p P $ p ) S d X ,  (3.31) 

but the unknown function P(2p l) must be zero since there is no viscous term in the outer 
flow to match to at this order. The first non-vanishing viscous term which must be 
matched to the outer flow, for the MKdV theory, enters at  O(e3 log 8 ) .  

Higher-order terms in the inner expansion can be computed, in principle, by 
following the above procedure. For example, the next few terms have the form 

Y3) = (b~,/16U;)A2(cos2n.rrz+ 1),  (3.32) 

- m  

y ( 4 , O )  = P(4,O)(S, T ,  z) + P(,2,O)y(1), 

Y(5.0) = P(5,O)(S, T ,  2) + P ~ ~ o ) Y ( 2 )  + k2A cos nm, 

(3.33) 
(3.34) etc. 

At each stage the secularity condition and matching are used to determine the 
unknown functions. It becomes necessary, however, to introduce another (viscous) 
time scale in the critical layer if the viscous O(h) correction at each order is to remain 
uniformly valid. We choose to terminate the discussion of SN modes a t  this point, but 
shall exhibit the need for these modifications to the secularity condition in the next 
subsection, where we discuss the critical-layer solution for RN modes. 

3.2. Regular neutral modes 
When considering RN modes, the singularities in the outer expansion are postponed to 
higher-order terms compared with SN modes. The leading-order eigenfunction $(y) is 
regular for all y and the next-order solutions [see (2.17) and (2.23)] have the form 

n= 1 n=2 
(3.35) 
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These results show that the critical-layer expansion for these modes must proceed as 
follows: 

Y = S p ( 0 )  + €+W) + € Y 2 )  + €4 log €Y(3) + €#Y(4) + € 2  log €Y(6) + € 2 Y ( 6 )  

+ E+ log SY(~)+  EW*) + ~310g2 S Y ~ )  + €3 log ~ ~ ( 1 0 )  + a? + . . .>. (3.37) 

The matching condition for the functions appearing in this expansion is evaluated to be 

1 + € 2  (3 ~4 + 6 Y ~ A  cos nnz) + e+ log e [ 3 ~ ~ 2 ( c o s  2nnz + 1) 
4!  2 

4 "' A2 
+c+ [g Y ~ + L  Y ~ A  cosnnz +p1 Y log I Y I  -;i-(cos2nnz+ 1) + ...I + ...) . 

6 
(3.38) 

The solution for the first two terms in the expansion are given identically by the 
The equation governing the motion in the critical layer remains (3.10). 

expressions in the matching condition. At the next order we have the equation 

(s, a, - s, a,) (~ 'g$ + K ~ Y & )  = AY$$, y. (3.39) 

Writing the function Y@) as 
y(2) = y(% 0) + Aye% 1) + . . . , (3.40) 

we obtain Yg)y = F@* O)(S, T ,  2) + k2+, A cos nnz. (3.41) 

It is important to note that, although the solution F(2,0) = UtUA-18 satisfies the 
matching condition identically, it violates the secularity condition defined in (3.25), 
leading to a non-uniformity in the solution for the viscous correction Y(2,1). The 
secularity condition, as can be observed from (3.26), always leads to a homogeneous 
solution behaving asymptotically (for large Y )  as SB. The matching condition, on the 
other hand, requires a homogeneous solution behaving as S for large S. It appears that 
the difficulty can be circumvented only by introducing a viscous time scale in the 
critical layer. We point out that this difficulty is not unique to the long-wave analysis 
presented here, but, in fact, must appear in the problem discussed by Benney & Maslowe 
as well since the difficulty arises with the matching to the mean flow at successively 
higher orders. 

Introducing a viscous time scale defined by 

9. = at, 6 = (R€3)4 = A/€+, (3.42) 

the equation for W2* becomes 

aYp$) /aX  = -S-1F(2>o)+ P I 9  (By F g o ) ) s .  (3.43) 

Applying the secularity condition now yields the partial differential equation for F(2.0): 

This is a diffusion equation with variable coefficients. For S < S, we must take F(2,O) 
to be a constant as explained earlier. In order to show that the nonlinear critical layer 
can be used to construct a solution which is uniform for ally, we must demonstrate that 

25-2 
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(3.44) admits solutions varying as X for large 8. The same type of homogeneous 
equation, with corresponding higher-order viscous time scales, must be solved a t  all 
successive orders where mean-flow terms appear in the matching condition. For 
example, one can show quite readily, using the relations among various derivatives of 
the eigen function implied by the eigenvalue equation and after computing the 
particular solutions a t  each order, that the solution for W4) must behave as 

to satisfy the matching condition, Y@) must vary as 5 2 ,  etc. 

purposes it seems to be sufficient to show that the model equation 
The general solution of (3.44) has not been obtained as yet. However, for present 

(3.45) 

admits solutions varying as xgn, n. = 2,3 ,  . . .,for x large so that the asymptotic matching 
conditions can be satisfied. To this end we examine the similarity solution of (3.45): 

(3.46) I F = X"f(7),  7 = x/t, 
7"f' + [q2 + (2a + 8 )  7lf' + a(a - *)f = 0. 

One independent solution valid for large 7 behaves as 

(3.47) 01(01- Q) 
7 

a(a - 8) (2a2 - 501 + 3) + ... . r2 f = l+- + 
It is interesting to note that this series terminates after the 7-1 term when a = 1, after 
the r,r2 term when a = 2, etc. For half-integer values of a, all terms are present. The 
other independent solution decays exponentially for large 7. Hence we conclude that 
application of the secularity condition, appropriately modified through the use of 
viscous time scales, and asymptotic matching yield a consistent description of the 
flow in the critical-layer region. Viscous boundary layers along the dividing stream- 
lines may be required a t  various stages of the analysis if the vorticity is to be smoothly 
matched across the critical layer, but they cause no difficulty in principle. 

4. Examples and discussion 
We now present some solutions to the eigenvalue problems (2.14) and (2.31) and 

illustrate the kinds of streamline pattern associated with an isolated solitary wave that 
can appear for a couple of specific flows. In  order to limit the discussion, we consider 
only RN modes and an asymmetric shear flow. There is no doubt that solutions to 
the eigenvalue problem for SN modes exist since Benney & Bergeron have com- 
puted them for several shear flows for the case p = 0, including the shear-layer case 
U(y) = tanh y. If they exist for p = 0, there is ample reason to expect that they exist 
for /3 $: 0. 

For the KdV (homogeneous atmosphere) case, the RNM solution can be con- 
structed for the shear flow 
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FIGURE 2. Streamline patterns for KdV solitons in an asymmetric 
shear flow; m = 0.1, E = 0.4. 

where sn (ylm) is the Jacobian elliptic function with modulus m. The restriction m > 0 
is necessary because the numerator, of ( 2 . 3 4 ~ )  vanishes identically when m = 0. When 
m is small compared with unity, the solution for the first mode is given by 

$(y) = cosy + m@y sin y + $z cos 39 - &c0 sin 2y) + O(m2), (4.2) 

where co=-p/(l+kt)+O(m2), - 1  < c o < o .  (4.3) 

The phase speed is westward (negative), consistent with the known property of Rossby 
waves. The coefficients (2.34) in the KdV equation for this case are evaluated to be 

3m 1 1 
& = - - , - ( 1 - 6 ~ ~ + 4 ~ ~ ) ,  S - l + k o c o  O -  2c0(l+k3'  (4.4) 

It is interesting to note that Ro changes sign along the eigenlocus, so that solitary 
waves of type E exist for -0.437 < co < 0 and solitary waves of type D exist for 
- 1 < co c - 0.437. These results are independent of the direction of the shear. 
Streamline patterns for each wave type are shown in figure 2. Solutions for higher 
modes and for other shear flows, including theoretical results and patterns for inter- 
actions of solitary waves with differing co, are being constructed and will be reported 
separately (Redekopp & Weidmann 1977). 

When the atmosphere is stratified, a solution of the eigenvalue problem (2.14) exists 
for m = 1 (U(y) = tanh y) and -a < y < co in (4.1) and has been studied inde- 
pendeittly by Howard & Drazin (1964) and Lipps (1965). The eigenfunction was 

(4.5) $,(y) = (1 + tanh ~)3(1-~on) (1  - tanh y)W+cod, 
found to be 



+o% -7 - 5  0 5 

x-CI 

FIQURE 3. Streamline patterns for MKdV solitons in an unbounded 
asymmetric shear flow; c,, = - 0.7, e = 0.4. 

with the eigenvalue relation 

p = 2k:( 1 - k2,)i = - 2 con( 1 -con),  con = - (1 - k:)). (4.6) 

A solution of the type given in (4.2) for 0 < m < 1 can be constructed also, but it is, 
perhaps, more instructive to exhibit streamline patterns for the unbounded case of 
(4.5). Although the numerical computation of the coefficient R, in the MKdV equation 
has not been accomplished for this case, it  seems plausible from the solution for small m 
that points on the eigenlocus (4.6) exist for which R, is positive. Assuming this to be 
true for col = - 0.7, we take R, = O(1) and compute the streamline patterns shown in 
figure 3. Note that we have chosen the amplitude to be quite large (s = 0.4) in order to 
dramatize the kind of pattern that emerges in an extreme limit of the theory. 

The latter eigenvalue solution was included because it provides a convenient basis 
for presenting a conjecture about the ‘permanence’ of such entities, even in a slightly 
dissipative fluid. The conjecture hinges on the relationship of the solution (4.5) to the 
linear stability of the shear flow. In  the eigenvalue relation (4.6), which is depicted in 
figure 4, the atmospheric parameter k, takes the usual role of the wavenumber in 
stability theory. The true wavenumber is O(s) ( O ( d )  for the KdV case) and does not 
enter a t  this stage of approximation, but the implications of including it are interesting. 
Linear stability theory (cf. Lipps 1965) shows that values of (p, k2,) under the neutral 
eigenlocus lead to growing modes (instability) and values above the curve lead to 
damped modes (stability). Now, if the wavenumber a, say, were included in (4.6), the 
neutral curve in figure 4 would be the same, except that the abscissa would be k2, +as. 
This implies that those waves corresponding to points on the eigenlocus with 
k i  > k2,(pmaX) = 8 would experience a small growth. That is, they could continually, 
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FIQIJRE 4. The neutral curve for regular neutral modes in 
U ( y )  = tanh y shear flow. 

albeit slowly, extract energy from the mean shear flow to sustain their shape and 
motion. A preliminary attempt to quantify this conjecture is pursued in the following 
section. 

5. Higher-order evolution properties 
Previously we found that the amplitude evolution of a long Rossby wave in a 

stratified atmosphere was governed, to leading order, by the MKdV equation. That 
equation admitted stable, permanent, solitary-wave solutions. In  this section we 
obtain the next-order corrections to the MKdV equation with a view to ascertaining 
whether the higher-order terms will reflect the growth mechanism conjectured in the 
previous section. To continue the previous analysis to higher order, we follow a pertur- 
bation scheme in which we continue to assume that A depends only on the slow space 
and time variables (5, T ) ,  but that the evolution equation (2.20) will have to be modified 
appropriately a t  successively higher orders. 

In $2.1 we found that the first three terms in the expansion for the perturbation 
stream function (2.10) were given by 

@l) = A (6,  r )  $(y) cos nnz, 
@2) = &42( 4'2. 2) cos 2nnz + $@. 0') 

(5.1) 

(5.2) 

and @a) = A55$~3~1)~~~nnz+A34&3~1)cosnnz +A3$(393)cos 3nnz, (5.3) 

provided that A ( &  r )  obeyed the MKdV equation. Continuing the analysis to higher 
orders one finds, after some effort, that 

$(4) = A4{4\414)(~) COS 4nnZ + $14*2) (y)COS 2nn.2 + 4i410)(y)} 
+ (A$ { 4 & 4 3 4 )  cos 4nnZ + 4 L 4 s 2 )  cos 2nnz + $!j430)} 

+ (Az)" {$p9 4, cos 4nnz + $i4* ') cos 2n7r.z + $$430)}, (5.4) 
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and that the contribution to @5) from the nth internal-wave mode, $4'". l) say, is given by 

ljF(5.1) = {A5$!5J)(y) + (A3)55$i5J)(y) +A(A5)2$i5J)(y) 
+A2A,$L5.')(y) + As555$55~1)(y)} cos nm. (5.5) 

The equations defining the various functions of y are lengthy and will be omitted. The 
Iast result also requires the evolution equation to assume the form 

AT + +Rn(A3)5 + Sn 
= e2{l'lnAgg5+ "2n(A2A55)5 + l'3n[A(A6)21s + "4n(A3)555 + v5n(A5)5} + O(e4). (5 .6 )  

The coefficients vin are determined in the same manner as that outlined in Q 2.1. It is 
evident that the higher-order terms are dispersive and do not reflect any growth 
mechanism. In  fact, the equation admits a solitary-wave solution of the type 

(5.7) 

showing that the amplitude, shape and speed are changed to O(e2) .  It appears, there- 
fore, that a weakly growing solitary-wave theory, at  least in the long-wave limit in 
mind here, must incorporate the effect of viscosity in a more direct way. The viscous 
time scale in the critical layer may be influential to this end, but we have not succeeded 
in delineating its role in the wave evolution as yet. However, if we simply allow the 
coefficients in the MKdV equation to have small imaginary parts consistent with a 
viscous critical-layer approach and then perform a perturbation analysis using the 
soliton as the lowest-order solution, one is able to show that the soliton can persist 
even in the presence of a small damping effect. This work is still in progress. 

A = ( A ,  + e2A2 sech2 0) sech 8, 0 = 8, + e202, 

6. Concluding remarks 
We have examined some dynamical and mathematical aspects of solitary Rossby 

waves and have shown that solitary waves of various morphologies exist in a shear 
flow. The flow pattern associated with the E-soliton type delineated herein has a form 
strikingly similar to observations of the Great Red Spot on Jupiter. A preliminary 
discussion of how the present theory may apply (e.g. length scales, atmospheric para- 
meters, etc.) in that case has been presented by Maxworthy & Redekopp (1976a, b) .  
Some appealing aspects of a soliton model for the Red Spot, which are lacking in all 
other hypotheses concerning its fluid-dynamic character, include the retention of 
identity following interactions with other (soliton) features, the permanence of the 
wave form, and the fact that the shape and the propagation speed will vary in a 
unique way depending on the sheared zonal current. Further model studies and an 
intensive review of Jovian observations are underway to help scrutinize this model. 

It is anticipated that certain features of solitary Rossby waves may emerge as 
important descriptive entities in the terrestrial atmosphere and ocean as well. 
A necessary requirement for the existence of these waves is that shear flows persist for 
times long enough for the formation of solitons. This time is quite long (O(e-3) for the 
MKdV case and O(s-8) for the KdV case). However, the important point we wish to 
emphasize is that the present analysis demonstrates the existence of coherent eddy 
motions with very peculiar interaction properties and a 'permanent ' identity in 
marginally stable shear flows. The same kind of theory is being developed for internal 
waves in shear flows and will be reported separately. In  fact, the types of solitary-wave 
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solutions presented here are not complete. The MKdV equation also admits unsteady, 
localized, solitons called ‘ breathers ’ and some interesting examples of these motions 
are presented in Redekopp & Weidman. The distinction between solitons with 
critical layers and the large-scale features of turbulent motion in observations or 
measurements in these kinds of flows, then, is not so clear. Indeed, the dynamics and 
existence of solitary waves in shear flows in general deserve a closer look. 

This work was supported by NASA, Planetary Atmospheres Branch, under Grant 
NGR-05-018-178. The author benefited from discussion on several aspects of this work 
with M. J. Ablowitz, R. E. Kelly and S. A. Maslowe. The stimulation for this work was 
provided by my colleague, T. Maxworthy. 
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